

Journal of Organometallic Chemistry 498 (1995) C10-C13

Preliminary communication

## Direct synthesis of acetals by rhodium catalysed hydroformylation of alkenes in the presence of orthoformate

K. Soulantica <sup>a</sup>, S. Sirol <sup>b</sup>, S. Koïnis <sup>a</sup>, G. Pneumatikakis <sup>a,\*</sup>, Ph. Kalck <sup>b,\*</sup>

<sup>a</sup> Inorganic Chemistry Department, University of Athens, Panepistimiopolis, 157 71 Athens, Greece <sup>b</sup> Laboratoire de Catalyse et de Chimie Fine, Ecole Nationale Supérieure de Chimie deToulouse, 118, route de Narbonne 31077 Toulouse cédex, France

Received 9 January 1995

## Abstract

The two catalyst precursors  $[Rh_2(\mu-penicillamine)_2(CO)_4][OTf]_2$  and  $[Rh_2(\mu-cysteine)_2(CO)_4][OTf]_2$  in the presence of 4 equivalents of P(OPh)\_3 in triethyl orthoformate as solvent and reactant, permit the low pressure hydroformylation of various alkenes into the corresponding acetals. Apart from a few low-yield by-products resulting from isomerization of the substrates, the carbonylated products obtained directly and exclusively are acetals.

Keywords: Hydroformylation; Rhodium; Catalysis; Acetals

Acetals are protected forms of aldehydes, and several recent papers have described not only the catalytic conversion of an aldehyde into the corresponding acetal [1] but also the direct production of acetals by hydroformylation when identification of chiral compounds are required by NMR spectroscopy [2,3]. In particular, Stille and Parrinello have shown that hydroformylation of various prochiral alkenes catalysed by platinum-tin systems can be carried out in triethyl orthoformate, leading directly the diethylacetals of interest [2,3]. However, the introduction of trialkyl orthoformate as solvent or reactant causes a dramatic reduction in reaction rates. Cobalt catalysts have also been used but the yields remain very poor [4]. Recently Claver, Castillón, et al. carried out the hydroformylation of alkenes in triethyl orthoformate in the presence of pyridinium 4-toluene sulfonate and obtained high yields of the expected acetals [5,6].

In addition, Venanzi et al. have shown that aldehydes and ketones can be acetalized under mild conditions of temperature [1] using various rhodium precursors that generate species with Lewis-acid character and contain the triphosphine  $H_3CC(CH_2PPh_2)_3$ .

We report preliminary results where 1-octene or monoterpenes are chemoselectively converted into diethylacetals by use of cysteine- or penicillamine-bridged dicationic dirhodium complexes as catalyst precursors.

The classical hydridorhodium mononuclear complex  $[HRh(CO){P(OPh)_3}_3]$ , in triethylorthoformate as solvent (molar alkene/rhodium ratio = 300) at 84 °C, 1.2 MPa and for 18 h gave a 31% conversion of *trans*-iso-limonene into a mixture of 50% acetal and 50% aldehyde, with a small amount of isomers of the substrate (Eq. 1).



(1R, 4R)-isolimonene

The complex  $[Rh_2(\mu-S^{-1}Bu)_2(CO)_2\{P(OPh)_3\}_2]$ (molar alkene/dirhodium ratio = 600) in the presence of 10 equivalents of  $P(OPh)_3$  transformed 50% of

<sup>\*</sup> Corresponding author.

limonene into carbonylated products with selectivities of 93% in aldehyde and only 7% in acetal (Eq. 2).



(+)-R-limonene

A similar experiment carried out with (1R, 4R)-isolimonene (see Eq. 1) in the presence of 4 equivalents of P(OPh)<sub>3</sub> gave a 28% conversion, including 4% isomerization of the substrate, and a ratio of aldehyde/acetal of 96/4.

We have found that dinuclear precursors containing cysteine or penicillamine as bridging ligands can transform 1-octene, *trans*-isolimonene or  $\beta$ -pinene into acetal with complete chemoselectivity. Provided the reaction time was adjusted for each substrate, only minor amounts of isomers of the starting materials were produced (2-octene, terpinene or terpinolene...,  $\alpha$ -pinene respectively).

The two thioamino acids  $HSCR_2CH(NH_3)^+(COO)^-$ [R = H (cysteine 1) and R = Me (penicillamine 2)], were used as bridging ligands to prepare the two tetracarbonyl complexes  $[Rh_2(\mu-1)_2(CO)_4][CF_3SO_3]_2$ , 3, and  $[Rh_2(\mu-2)_2(CO)_4][CF_3SO_3]_2$ , 4, that we isolated in the solid state. Addition of Ag(CF\_3SO\_3) to  $[Rh_2Cl_2-(CO)_4]$  in acetone under CO led, filtration of silver chloride and addition of 1 or 2, to the two complexes 3 and 4, in which the bridging ligands are -SCR\_2CH(NH\_3)^+(COOH) (Fig. 1).

Complex 3 shows three  $\nu$ (CO) bands at 2096 (s), 2073 (s) and 2027 (vs) cm<sup>-1</sup> (KBr pellets) consistent with a C<sub>2v</sub> symmetry, and no  $\nu$ (SH) band in the 2550 cm<sup>-1</sup> region. The COOH group is characterized by its  $\nu$ (CO) band at 1740 cm<sup>-1</sup> and the NH<sub>3</sub><sup>+</sup> group by its  $\nu$ (NH) band at 2955 cm<sup>-1</sup>. Similarly, complex 4 has 3  $\nu$ (CO) bands at 2084 (s), 2068 (s) and 2018 (vs) cm<sup>-1</sup>,



Fig. 1. Schematic diagram showing the two tetracarbonyl ( $\mu$ -cy-steine) or ( $\mu$ -penicillamine) dirhodium complexes 3 and 4.

a  $\nu$ (CO) band at 1733 cm<sup>-1</sup> for the COOH group, and a  $\nu$ (NH) band at 2971 cm<sup>-1</sup> consistent with a NH<sup>+</sup><sub>3</sub> group [7].

Addition of 4 equivalents of triphenylphosphite to complexes 3 and 4 in triethyl orthoformate generated active species which converted the substrates at 0.5, 1.2, or 2.1 MPa and 84 °C into the corresponding diethylacetals (Table 1). For instance 4, 1-octene (row 1, Table 1) gave 87% conversion with only traces of 2-octene in 30 min. Two acetals were obtained with almost 100% chemoselectivity, the distribution being 1, 1-diethoxy-2-methyl-octane (18%) and 1, 1-diethoxy-nonane (82%). This catalysis corresponds to a turnover frequency of 1080 mol of product (mol<sup>-1</sup> of precursor)<sup>-1</sup> h<sup>-1</sup>. (1*R*, *4R*)-isolimonene (row 2, Table 1) reacted more slowly (53% in 3 h) and 47% of the acetal was produced. About 2% heavy-products and 4% isomers were identified.

Harsher conditions need to be used for  $\beta$ -pinene. Row 6, Table 1 shows that 2.1 MPa and 98 °C permit-

Table 1

Direct synthesis of acetals by hydroformylation of alkenes using  $[Rh(\mu-SCR_2CH(NH_3)(COOH)]_2[OTf]_2$  [R = H (3), R = Me (4)] as catalyst precursor <sup>a</sup>

| Row | Catalyst <sup>b</sup> | Substrate               | P<br>(MPa) | t<br>(h) | Conversion <sup>c</sup><br>(%) | Yield <sup>d</sup><br>(%) | By-products                |
|-----|-----------------------|-------------------------|------------|----------|--------------------------------|---------------------------|----------------------------|
| 1   | 4                     | 1-octene                | 0.5        | 0.5      | nd                             | 87 °                      | traces of 2-octene         |
| 2   | 3                     | (1R, 4R)-isolimonene    | 1.2        | 3        | 53                             | 47                        | isomers of isolimonene     |
| 3   | 3                     | (1R, 4R)-isolimonene    | 1.2        | 18       | 97                             | 44                        | isomers and heavy products |
| 4   | 4                     | (1R, 4R)-isolimonene    | 1.2        | 18       | 95                             | 76                        | isomers and heavy products |
| 5   | 4                     | $(-)$ - $\beta$ -pinene | 2.1        | 18       | 56                             | 52                        | $\alpha$ -pinene           |
| 6   | 4                     | $(-)$ - $\beta$ -pinene | 2.1        | 18       | 80 <sup>f</sup>                | 71                        | $\alpha$ -pinene           |

<sup>a</sup> Reaction conditions: 40 ml triethyl orthoformate, 60 mmol substrate, substrate/catalyst = 600, 0.4 mmol triphenyl phosphite,  $CO/H_2 = 1/1$ , T = 84°C.

<sup>b</sup> 3 or 4 prepared in triethyl orthoformate starting from 0.1 mmol of  $[Rh_2Cl_2(CO)_4]$ .

<sup>c</sup> Substrate converted measured by gas phase chromatography with an internal standart (acetophenone).

<sup>d</sup> Yield in acetals.

<sup>e</sup> Octene converted based on the total octene (1- and 2-) present, measured by gas phase chromatography with an internal standard (anisole).  $^{f}$  T = 98°C.



2-(2,2-diethoxyethyl)-6,6-dimethyl-bicyclo[3.1.1]heptane



(3R)- and (3S)-1,1-diethoxy-3-(4-methylcyclohex-2-enyl)butane

Fig. 2. <sup>13</sup>C NMR (62, 9 MHz, CDCl<sub>3</sub>) data for acetals produced by hydroformylation of (-)- $\beta$ -pinene and (1R, 4R)-isolimonene in triethylorthoformate.

ted 80% transformation of the starting material in 18 h. However, at this temperature there was 8% isomerization to  $\alpha$ -pinene, whereas at 84 °C only 4% isomerization occured (row 5). The reaction is diastereoselective. A chiral carbon atom is formed, and the two configurations were obtained in a ratio of 87% (R) to 13% (S) i.e. a diastereoisomeric excess of 74% (Eq. 3) as observed by GC. However, in this case the two chiral bridging ligands do not improve the diastereoselectivity with regard to  $[Rh_2(\mu-S^{-t}Bu)_2(CO)_4]$  plus P(OPh)<sub>3</sub>. Pittman et al. [8] have previously observed such an asymmetric induction (67% d.e.) in the absence of chiral ligands on their rhodium or cobalt precursors. However, they obtained mixtures of 3- and 10-formylpinane and the corresponding alcohols, depending on the reaction conditions.



Here, the two acetals resulting from (-)- $\beta$ -pinene were isolated by column chromatography on silica gel (hexane, ethyl acetate) and identified by GC/MS, and <sup>1</sup>H NMR, and <sup>13</sup>C NMR spectroscopy (see Fig. 2). A similar procedure was carried out for (1R, 4R)-iso-limonene, and we also obtained the two acetals. In this case, no diastereoisomeric excess was observed.

The main benefit of using 3 or 4 as catalyst precursors in the hydroformylation reaction carried out in trialkyl orthoformate is to produce acetals directly in high yield with no decrease of the reaction rate.

## Acknowledgements

We thank the Platon program between France and Greece for travel and subsistence, and the Comptoir-Lyon-Alemand-Louyot for a loan of rhodium trichloride.

## References

 J. Ott, G.M. Ramos Tombo, B. Schmid, L.M. Venanzi, G. Wang and T.R. Ward, *Tetrahedron Lett.*, 30 (1989) 6151.

- [2] G. Parrinello and J.K. Stille, J. Am. Chem. Soc., 109 (1987) 7122.
- [3] J.K. Stille, H. Su, P. Brechot, G. Parrinello and L.S. Hegedus, Organometallics, 10 (1991) 1183.
- [4] P. Pino, G. Consiglio, C. Botteghi and C. Salomon, Adv. Chem. Ser., 132, Am. Chem. Soc. Ed. (1974) 295.
- [5] A.M. Masdeu, A. Orejón, A. Ruiz, S. Castillón and C. Claver, J. Mol. Catal., 94 (1994) 149.
- [6] E. Fernández and S. Castillón, Tetrahedron Lett., 35 (1994) 2361.
- [7] (a) A. Kay and P.C.H. Mitchell, J. Chem. Soc. (A) (1970) 2421;
  (b) K. Nakamoto, Y. Morimoto and A.E. Martell, J. Am. Chem. Soc., 83 (1961) 4528; (c) G. Pneumatikakis and N. Hadjiliadis, J. Inorg. Nucl. Chem., 41 (1979) 429; (d) S.T. Chow, C.A. Mc Auliffe and B.J. Sayle, J. Inorg. Nucl. Chem., 35 (1973) 4349.
- [8] E.N. dos Santos, C.U. Pittman, Jr. and H. Toghiani, J. Mol. Cat., 83 (1993) 51.